Lower bounds for testing Euclidean Minimum Spanning Trees

نویسندگان

  • Oren Ben-Zwi
  • Oded Lachish
  • Ilan Newman
چکیده

The Euclidean Minimum Spanning Tree problem is to decide whether a given graph G = (P,E) on a set of points in the two dimensional plane is a minimum spanning tree with respect to the Euclidean distance. Czumaj, Sohler, and Ziegler [2] gave a 1-sided-error non-adaptive property-tester for this task of query complexity Õ( √ n). We show that every non-adaptive (not necessarily 1-sided-error) property-tester for this task has a query complexity of Ω( √ n), thus, [2] test is of best complexity. We further prove that every adaptive property-tester has query complexity of Ω(n). Those lower bounds hold even when the input graph is promised to be a bounded degree tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners

We show that for every n-point metric space M and positive integer k, there exists a spanning tree T with unweighted diameter O(k) and weight w(T ) = O(k · n) · w(MST (M)), and a spanning tree T ′ with weight w(T ′) = O(k) · w(MST (M)) and unweighted diameter O(k · n). These trees also achieve an optimal maximum degree. Furthermore, we demonstrate that these trees can be constructed efficiently...

متن کامل

On the Area Requirements of Euclidean Minimum Spanning Trees

In their seminal paper on Euclidean minimum spanning trees [Discrete & Computational Geometry, 1992], Monma and Suri proved that any tree of maximum degree 5 admits a planar embedding as a Euclidean minimum spanning tree. Their algorithm constructs embeddings with exponential area; however, the authors conjectured that c × c area is sometimes required to embed an n-vertex tree of maximum degree...

متن کامل

An Approach for Proving Lower Bounds: Solution of Gilbert-Pollak's Conjecture on Steiner Ratio

'Let {gi(z)}iEr be a family of finitely many continuous functions on a polytope X. Consider the problem of minimizing the function f(z) = maxiGrgi(2) on X. Many problems about lower bounds can be reduced to this general form. In this paper, we show that if every gi(z) is a concave function, then the minimum value of f(z) is achieved at finitely many special points in X. As an application, we so...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

Low-Cost Fault-Tolerant Spanning Graphs for Point Sets in the Euclidean Plane

The concept of the minimum spanning tree (MST) plays an important role in topological network design, because it models a cheapest connected network. In a tree, however, the failure of a vertex can disconnect the network. In order to tolerate such a failure, we generalize the MST to the concept of a cheapest biconnected network. For a set of points in the Euclidean plane, we show that it is NP-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2007